

Concentrated intermediate load

Left end fixed, right end fixed

N	0	ta	ti	on	ı fil	le
_						

Provides a description of Table 3 and the notation used.

Enter dimensions,	Before progressing further, calculate the moment of
properties and	inertia (I) for your cross section by flipping to Table
loading	1. Enter the computed value below:

Table 1

Area moment of inertia:	$I = 7.235 \cdot in^4$
Length of beam:	$L \equiv 120 \cdot in$
Distance from left edge to load:	$a \equiv 60 \cdot in$
Modulus of elasticity:	$E = 29.5 \cdot 10^6 \cdot \frac{\text{lbf}}{\text{in}^2}$
Load:	$W \equiv 1000 \cdot lbf$

Boundary values

The following specify the reaction forces (R), moments (M), slopes (θ) and deflections (y) at the left and right ends of the beam (denoted as A and B, respectively).

At the left end of the beam (fixed):

$$R_{A} := \frac{-W}{L^{3}} \cdot (L-a)^{2} \cdot (L+2 \cdot a) \qquad R_{A} = -500 \cdot lbf$$

$$M_{A} := \frac{-W \cdot a}{L^{2}} \cdot (L-a)^{2} \qquad M_{A} = -1.25 \times 10^{3} \cdot lbf \cdot ft$$

$$\theta_{A} := 0 \cdot deg$$

$$y_{A} := 0 \cdot in$$

At the right end of the beam (fixed):

$$R_{B} := \frac{-W \cdot a^{2}}{L^{3}} \cdot (3 \cdot L - 2 \cdot a) \qquad R_{B} = -500 \cdot lbf$$
$$M_{B} := \frac{-W \cdot a^{2}}{L^{2}} \cdot (L - a) \qquad M_{B} = -4.022 \times 10^{4} \frac{ft^{2} \cdot lb}{s^{2}}$$

 $\theta_B \coloneqq 0 {\cdot} deg$

 $y_B := 0 \cdot in$

General formulas and graphs for transverse shear, bending moment, slope and deflection as a function of x

Note: To find the maximum and minimum values of a graphed function, simply **click** once on the graph and read the extreme values to the left of the plot.

$\mathbf{x} \coloneqq 0 \cdot \mathbf{L}, .01 \cdot \mathbf{L} \dots \mathbf{L}$	x ranges from 0 to L, the length of the beam.
$x_1 := 120 \cdot in$	Define a point along the length of the beam.

Transverse shear

$$W(x) := R_A - (x > a) \cdot W$$
$$V(x_1) = -1.5 \times 10^3 \cdot lbf$$

Bending moment

$$\begin{split} M(x) &:= M_A + R_A \cdot x - (x > a) \cdot (x - a) \cdot W \\ M(x_1) &= -1.125 \times 10^4 \cdot lbf \cdot ft \end{split}$$

Slope

$$\theta(x) \coloneqq \theta_A + \frac{M_A \cdot x}{E \cdot I} + \frac{R_A \cdot x^2}{2 \cdot E \cdot I} - \frac{(x > a) \cdot (x - a)^2 \cdot W}{2 \cdot E \cdot I}$$

 $\theta(x_1) = -1.933 \cdot \text{deg}$

$$y(x) := y_A + \theta_A \cdot x + \frac{M_A \cdot x^2}{2 \cdot E \cdot I} + \frac{R_A \cdot x^3}{6 \cdot E \cdot I} - (x > a) \cdot \left[\frac{W}{6 \cdot E \cdot I} \cdot (x - a)^3\right]$$

$$\mathbf{y}(\mathbf{x}_1) = -1.349 \cdot \mathbf{in}$$

Selected maximum values of moments and deformations

Selected maximum Note: The signs in this section correspond to direction.

The subscripts **maxpos/neg** refer to the maximum positive or negative value for the given parameters.

$$\begin{aligned} &\mathsf{At} \ \mathbf{x} = \mathbf{a}, \\ &\mathsf{M}_{maxpos} \coloneqq \frac{2 \cdot W \cdot a^2}{L^3} \cdot (L - a)^2 \qquad \mathsf{M}_{maxpos} = 1.25 \times 10^3 \cdot \mathsf{lbf} \cdot \mathsf{ft} \\ &\mathsf{If} \ \mathbf{a} < \mathbf{L}/2, \\ &\mathsf{M}_{maxneg} \coloneqq \mathsf{M}_A \cdot \left(\mathbf{a} < \frac{L}{2} \right) + \mathsf{M}_B \cdot \left(\mathbf{a} \ge \frac{L}{2} \right) \\ &\mathsf{M}_{maxneg} = -1.5 \times 10^4 \cdot \mathsf{lbf} \cdot \mathsf{in} \\ &\mathsf{At} \ \mathbf{x} \ \mathsf{equals} \qquad \frac{2 \cdot a \cdot L}{L + 2 \cdot a} \cdot \left(\mathbf{a} \ge \frac{L}{2} \right) + \frac{2 \cdot (L - a) \cdot L}{L + 2 \cdot (L - a)} \cdot \left(\mathbf{a} < \frac{L}{2} \right) = 5 \cdot \mathsf{ft} \\ &\mathsf{y}_{maxneg} \coloneqq \frac{-2 \cdot W \cdot (L - a)^2 \cdot a^3}{3 \cdot E \cdot I \cdot (L + 2 \cdot a)^2} \qquad \mathsf{y}_{maxneg} = -0.042 \cdot \mathsf{in} \end{aligned}$$

The subscripts (**p**/**n**)**maxval** refer to the maximum magnitude of the most value for specific conditions.

If $a = L/2$,	
$\mathbf{M}_{\mathrm{pmaxval}} \coloneqq \frac{\mathbf{W} \cdot \mathbf{L}}{8}$	$M_{pmaxval} = 1.5 \times 10^4 \cdot lbf \cdot in$
If $a = L/3$,	
$M_{nmaxval} \coloneqq -0.1481 \cdot W \cdot L$	$M_{nmaxval} = -1.777 \times 10^4 \cdot lbf \cdot in$
If $x = a = L/2$,	
$y_{nmaxval} := \frac{-W \cdot L^3}{192 \cdot E \cdot I}$	$y_{nmaxval} = -0.042 \cdot in$