Concentrated intermediate load

Left end fixed, right end fixed

Notation file Provides a description of Table 3 and the notation used.

Enter dimensions, Before progressing further, calculate the moment of properties and loading inertia (I) for your cross section by flipping to Table 1. Enter the computed value below:

Table 1

Area moment of inertia:	$\mathrm{I} \equiv 7.235 \cdot$ in 4
Length of beam:	$L \equiv 120 \cdot$ in

Distance from left edge to load:
Modulus of elasticity:

$$
\mathrm{a} \equiv 60 \cdot \mathrm{in}
$$

$\mathrm{E} \equiv 29.5 \cdot 10^{6} \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}}$
Load:
$\mathrm{W} \equiv 1000 \cdot \mathrm{lbf}$

Boundary values The following specify the reaction forces (R), moments (M), slopes (θ) and deflections (y) at the left and right ends of the beam (denoted as A and B, respectively).

At the left end of the beam (fixed):

$$
\begin{array}{ll}
\mathrm{R}_{\mathrm{A}}:=\frac{-\mathrm{W}}{\mathrm{~L}^{3}} \cdot(\mathrm{~L}-\mathrm{a})^{2} \cdot(\mathrm{~L}+2 \cdot \mathrm{a}) & \mathrm{R}_{\mathrm{A}}=-500 \cdot \mathrm{lbf} \\
\mathrm{M}_{\mathrm{A}}:=\frac{-\mathrm{W} \cdot \mathrm{a}}{\mathrm{~L}^{2}} \cdot(\mathrm{~L}-\mathrm{a})^{2} & \mathrm{M}_{\mathrm{A}}=-1.25 \times 10^{3} \cdot \mathrm{lbf} \cdot \mathrm{ft} \\
\theta_{\mathrm{A}}:=0 \cdot \mathrm{deg} & \\
\mathrm{y}_{\mathrm{A}}:=0 \cdot \mathrm{in} &
\end{array}
$$

At the right end of the beam (fixed):

$$
\begin{array}{ll}
\mathrm{R}_{\mathrm{B}}:=\frac{-\mathrm{W} \cdot \mathrm{a}^{2}}{\mathrm{r}^{3}} \cdot(3 \cdot \mathrm{~L}-2 \cdot \mathrm{a}) & \mathrm{R}_{\mathrm{B}}=-500 \cdot \mathrm{lbf} \\
\mathrm{M}_{\mathrm{B}}:=\frac{-\mathrm{W} \cdot \mathrm{a}^{2}}{\mathrm{~L}^{2}} \cdot(\mathrm{~L}-\mathrm{a}) & \mathrm{M}_{\mathrm{B}}=-4.022 \times 10^{4} \frac{\mathrm{ft}^{2} \cdot \mathrm{lb}}{\mathrm{~s}^{2}} \\
\theta_{\mathrm{B}}:=0 \cdot \mathrm{deg} & \\
\mathrm{y}_{\mathrm{B}}:=0 \cdot \mathrm{in} &
\end{array}
$$

General formulas and graphs for transverse shear, bending moment, slope and deflection as a function of x

Note: To find the maximum and minimum values of a graphed function, simply click once on the graph and read the extreme values to the left of the plot.

$$
\begin{array}{ll}
x:=0 \cdot L, .01 \cdot L . . L & x \text { ranges from } 0 \text { to } L, \text { the length of the beam. } \\
x_{1}:=120 \cdot \text { in } & \text { Define a point along the length of the beam. }
\end{array}
$$

Transverse shear

$$
V(x):=R_{A}-(x>a) \cdot W
$$

$$
\mathrm{V}\left(\mathrm{x}_{1}\right)=-1.5 \times 10^{3} \cdot \mathrm{lbf}
$$

Bending moment

$$
M(x):=M_{A}+R_{A} \cdot x-(x>a) \cdot(x-a) \cdot W
$$

$$
\mathrm{M}\left(\mathrm{x}_{1}\right)=-1.125 \times 10^{4} \cdot \mathrm{lbf} \cdot \mathrm{ft}
$$

Slope

$$
\begin{aligned}
& \theta(x):=\theta_{A}+\frac{M_{A} \cdot x}{E \cdot I}+\frac{R_{A} \cdot x^{2}}{2 \cdot E \cdot I}-\frac{(x>a) \cdot(x-a)^{2} \cdot W}{2 \cdot E \cdot I} \\
& \theta\left(x_{1}\right)=-1.933 \cdot d e g
\end{aligned}
$$

Deflection $\quad y(x):=y_{A}+\theta_{A} \cdot x+\frac{M_{A} \cdot x^{2}}{2 \cdot E \cdot I}+\frac{R_{A} \cdot x^{3}}{6 \cdot E \cdot I}-(x>a) \cdot\left[\frac{W}{6 \cdot E \cdot I} \cdot(x-a)^{3}\right]$
$y\left(x_{1}\right)=-1.349 \cdot$ in

Selected maximum Note: The signs in this section correspond to direction. values of moments and deformations The subscripts maxpos/neg refer to the maximum positive or negative value for the given parameters.

At $x=a$,
$\mathrm{M}_{\operatorname{maxpos}}:=\frac{2 \cdot \mathrm{~W} \cdot \mathrm{a}^{2}}{\mathrm{~L}^{3}} \cdot(\mathrm{~L}-\mathrm{a})^{2} \quad \mathrm{M}_{\operatorname{maxpos}}=1.25 \times 10^{3} \cdot \mathrm{lbf} \cdot \mathrm{ft}$
If $\mathrm{a}<\mathrm{L} / 2$,
$M_{\text {maxneg }}:=M_{A} \cdot\left(a<\frac{L}{2}\right)+M_{B} \cdot\left(a \geq \frac{L}{2}\right)$
$\mathrm{M}_{\text {maxneg }}=-1.5 \times 10^{4} \cdot \mathrm{lbf} \cdot$ in
At x equals $\quad \frac{2 \cdot a \cdot L}{L+2 \cdot a} \cdot\left(a \geq \frac{L}{2}\right)+\frac{2 \cdot(L-a) \cdot L}{L+2 \cdot(L-a)} \cdot\left(a<\frac{L}{2}\right)=5 \cdot f t$

$$
y_{\text {maxneg }}:=\frac{-2 \cdot \mathrm{~W} \cdot(\mathrm{~L}-\mathrm{a})^{2} \cdot \mathrm{a}^{3}}{3 \cdot \mathrm{E} \cdot \mathrm{I} \cdot(\mathrm{~L}+2 \cdot \mathrm{a})^{2}} \quad \mathrm{y}_{\text {maxneg }}=-0.042 \cdot \text { in }
$$

The subscripts (\mathbf{p} / \mathbf{n})maxval refer to the maximum magnitude of the most value for specific conditions.

If $\mathrm{a}=\mathrm{L} / 2$,
$\mathrm{M}_{\mathrm{pmaxval}}:=\frac{\mathrm{W} \cdot \mathrm{L}}{8}$
$\mathrm{M}_{\mathrm{pmaxval}}=1.5 \times 10^{4} \cdot \mathrm{lbf} \cdot \mathrm{in}$
If $\mathrm{a}=\mathrm{L} / 3$,
$\mathrm{M}_{\mathrm{nmaxval}}:=-0.1481 \cdot \mathrm{~W} \cdot \mathrm{~L} \quad \mathrm{M}_{\mathrm{nmaxval}}=-1.777 \times 10^{4} \cdot \mathrm{lbf} \cdot \mathrm{in}$
If $\mathrm{x}=\mathrm{a}=\mathrm{L} / 2$,
$\mathrm{y}_{\text {nmaxval }}:=\frac{-\mathrm{W} \cdot \mathrm{L}^{3}}{192 \cdot \mathrm{E} \cdot \mathrm{I}}$
$y_{\text {nmaxval }}=-0.042 \cdot$ in

