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ABSTRACT

Estimation of point loads on a span for a vibrating pipe has
been done with the help of boundary measurement of slope
data. The approach is based on the theory of inverse force
identification for hyperbolic systems. Depending on the form of
the forcing function, which also satisfies some continuity
conditions an exact determination, is possible. Though
restrictive in its formulation some applications are still possible.
A typical case for harmonic excitation of a pulsating
reciprocating compressor has been shown as an illustration.

INTRODUCTION

Failure of an industrial piping due to vibrations is a serious
problem and of major concern in the reliability of plant
operations. Piping witnesses various vibratory loads throughout
its life cycle. These vibrations if not controlled will lead to
fatigue failures at points of high stress intensity or could even
damage the supports. All these could lead to plant outage or
even have more severe consequences like fire and loss of
human lives [1]. Thus it is imperative that the piping system
along with supports be designed for the vibration loads.

As a part of the design adequacy check the dynamic analysis
has to be carried out for the piping system. But the major
difficulty in the dealing with the operational vibration is
estimation of the forcing function. If the exciting forces can be
quantified precisely, the system response can be determined
with great accuracy by the existing analytical methods. But
unfortunately this is not readily possible in most cases since the
vibrations in an operating pipeline are flow induced. The
subject is still not completely understood today. The complexity
of flow patterns. vortex shedding and mechanism of force

coupling between fluid and piping makes the analytical
determination of the forcing function extremely difficult. In
such a scenario the data in the form of field vibration
measurements in conjunction with some analytical methods can
provide a basis for estimating the dynamic loads and stresses

(21(3]-

Some significant development has been made in the
mathematical theory of Inverse problems for distributed
parameter systems. Particularly for the hyperbolic systems work
on the identification of point sources deserves special mention
[4-6]. The fundamental objective is to determine the sources of
excitation from boundary or interior measurements of some
parameters. The main ingredients are spectral properties of
differential operators, controllability results and certain
properties of some integral operators. There are basically three
main steps in the studies : 1)uniqueness, 2)stability and
3)reconstruction. The first two steps deal with the conditions for
uniqueness of the sources and their stability for numerical
calculations. Reconstruction deals with the methodology for the
determination of the sources.

But the major difficulty lies in the application of the theory to
real systems. The theory is developed for a simple system
whereas the real systems are extremely complex. We are also
not sure whether a generalization can be done. However some
applications could be found after some extension of the theory.
In our study, which is mainly intended for engineering
application we have focused on the reconstruction method. In
the sequel we shall reproduce the main results of the basic
theory and then the application followed by a numerical
example.

NOMENCLATURE
L :Length of the pipe span .



ElI : Elastic Modulus * Area Moment of Inertia - Modulus of
Rigidity .

p  : mass per unit length of pipe/ EI .

X  :space variable: 0< x <L.

t : time variable .

T  :Time span.

u  : Transverse deflection .

u, : Space derivative of u .

u, : Time derivative of u .

o, : Natural frequency for the n™ mode .

®, :Mass-Normalized Eigen Vector for n" mode .

A. : Amplitude of the eigen-vector for n™ mode .

: Convolution Integral Operator .

D, :Adjoint of Operator D, .

f(x,t) : Forcing function .

d(x-xy) : Dirac Delta function at x;, .

fi  : Weights of the Dirac Delta Function for spatial variation
of f(x,t) .

g(t) :Time varying component of the forcing function .

g(t) : Time Derivative of g(t) .

M : Number of Loading points on the pipe.

&, 1 : Dimensionless distance x/L

®; :i™ Harmonic Frequency

C'(O,T) : Space of functions with continuous derivatives in the

interval (0,T) .

L}(0,T) : Space of square integrable functions in the interval
o,T).

MATHEMATICAL BACKGROUND

The main aim of our study is to determine the magnitude of the
forcing function acting as point loads on a simply supported
pipe span. The forcing function is represented as follows:

M
f(x,t) = (X fid(x-xi)) g(t) ey

k=1
The forcing function is assumed to be separable in space and
time functions. The space varying function is represented by
means of Dirac delta functions at M points with weights f,.The
time varying function g(t) is assumed to be in C'(0,T) and also
g(0) # 0. The function g(t) is assumed to be known a-priori.
This depends on the nature of excitation source (refer section
APPLICATION for details).
The material properties of the pipe are assumed to be
homogeneous ,isotropic and linearly elastic. Mass property and
the size of the pipe is uniform. Shear deformation and damping
have been neglected.

The dynamic equation of motion of a simply supported beam as
follows :

B ¥ Ui = 3 A3 -x)g® ()

Boundary Conditions (B.C) :
u(0,t) = 0 u(L,t) =0 3)
u,, (0,t)=0 u,, (L=0 “4)
Initial Conditions (I1.C) :

u(x,0) =0 u(x,0)= 0 5)

The eigen-frequencies of (1) are given as
o, = (1/‘/ n (na/L)? (rad/sec) (6)

The mass normalized eigen-vectors are given as
®, = A,sin(nax/L) n=1234.... @

A, = V@2/(p L) (8)

The solution to (2) by mode superposition principle with the
B.Cs and I.Cs (3) — (5)and using Duhamel’s integral can be
written as

o] t
u(x,t) = Z A, sin(nax/L)( 1/o,)( A,,:il fi, sin(nnx, /L)) ( OI g(t-

s)sin(w,s)ds) )

Let us consider the integral operator D, as follows.
t
D,v = [ 8(t-s) v(s) ds for any function v € L}0,T). (10)
0

The adjoint of Dy in L%(0,T) norm is given by
T
D,'v = [ g(s-t) v(s) ds an
t

Let us now define function ¥, (t) as the solution of the integral
equation as follows:

(2(0) + D, ¥n(t) = cos(wnt) 12)
where m = 0,1,2,3, .......

The above is a Volterra Equation of the second kind [6][8] and
it is well-known that it has a unique solution. We now state a
lemma involving the properties of the operator Dg' which will
be used in the proof our key result.

Lemma 1I: Let the time duration be defined as T = k(L¥m)V p

(k being a positive integer). Let ¥ ,(t) be a solution of (12).
Then

0}(g(O) cos(w,t) + ,fT g(t-s) cos(®,8)ds Y¥,(t) = I, (13)

where 1,,=0 for m # n and (14)



I,o = 0.5T for m=n (15) ® T
where m,n are non-negative integers. Cpu= Y A2 sin(nmn)(1/e,”) sin(nmé,)( [ g(t) ¥,(t) dt) -
In particular I, = 0 for any positive integern  (16) o=t 0
A{(l/o,") sin(rn;) sin(a)(0.5T)
Proof : We have from definition of D,

T t T T T
J(g(0)cos(wat) + [ g(t-s) cos(m,s) ds ). (t)dt = [ (g(0) + R; = ( 0! u(z;,t) Po(t) dt) /( OJ g(t) Yo(t) dt)
[} 0 [}
D, )¥n(t) cos(m,t) dt T
T R, = Iu(ziat)qll(t) dt
= [ cos(opt)cos(m,t) dt 17) 0
0 Then
Thus we have fi = (Cu/AR, - (C/AR, (21)
Imn = 0'5(Sin(((’~)m + o, )T) /((’)m+(°n) = Sin((mm' W, )T) /(('om‘
®,)) (18) f; = -(Cu/A)R, + (Ci/M)R, (22)
Let T= k(L¥m)V p for any positive integer k Where A = C1Cy; - C12Cyy
Thenl,,=0 when m #n andI,,=(0.5T) when m=n Or
Thus we prove (14) and (15).
Substituting m = 0 in (18) we get (16). [ ] Let
With help of the above development we may now formulate our Cn= ZIA,.Z (n/L)(V/o,2) sin(nag) ; Cp, = Z_:lA,,z

reconstruction strategy in the form of a proposition as follows:
(na/L)(1/o,2) sin(nat,)

Proposition 1 : Let the location of the point sources be known. © T
Then from the boundary measurement of the slope u (0,t) or Cu= YA, (m/L)(1/o,) sin(nat,)(| g() ¥,(t) dt) -
from the displacement measurement of any interior point u(z;t) ol o
and for a time duration T = k(L*m)V p  (k being a positive A{* (w/L)(Ve,’) sin(ng;) (0.5T)
integer) the load component f; (j = 1 to M) can be estimated as
follows: © T
For a single source (i.e M=1) : Cp = n;lAnz (nn/L)(1/e,”) sin(nné,) ( (-! g ¥, () dt) -
T w T
f= (OI u,(0,t) Wo(t) dt) / (( zlA,.’ (nm/L)(1/e,})sin(nag,))( £ A (@/L)(Voy") sin(rE;)(0.5T)

g(t) Yo(t) dt))  (19) T T T
R; = ( 0Iu,(o,t) Wo(t)dt) /( 01 gt) Yo(t) dt); R,= 0qu(0,t)

0
' T v ¥ (t) dt
fi= (Ju@,) ¥o(® dt)/ (T A,* sin(nmn;)(Lo,)sin(nag))(
0 n=1 Then
[0 Yoy d)  (20) fi= (Co/AR,— (Cr/AR, (23)
0
For double sources (i.e M=2) : f;= -(Co/MR; +(Cu/MR, (24)

Let
Where A = C;Cy;— C,1Cy2

Cu= YA sin(mmn)(l/o,)) sin(nng;) ; Cn= T A,
=t =1 Proof :  From (9) using integration by parts we obtain the

sin(nn;)(1/0,”) sin(nné,) following:
© ®© M
Cn= ;Anz sin(nzn)(1/00,”) sin(na;)( !}Tg(t) Yi(t) do) - u(x,t) = EIA.,Z sin(nzx/L)(1/ ng)g;lfk sin(nat,) g(t) -

t

A (1/w?) sin(n;)sin(né )(0.5T) w M
z_;lA.,z sin(nnx/L)(l/mnz)kz_lfk sin(nnt,)( g(0)cos(w,t) + [ g(t-s)



cos(wns) ds ) (25)
Also

u(x,t) = élA.,’ (nn/L)cos(nnx/L)(l/m.,z)i 1fk sin(nngy) g(t) -

:V; Al (nn /L)cos(nnx/L)(l/m.,z)glfk sin(nng,)( g(0)cos(m,t) +
n=1 =

t
J‘;g(t-s)cos((ons)ds) (26)

For M =1 we have
u(0,t) = QZ;A.,Z (nn/L)(Ve,”) £y sin(nn€,) g(t) -

o0 t
Y Ast (na/L)(l/o,) f; sin(nag)( g0)cos(wa) + | g(t-s)
n=1 0

cos(e,s) ds ) @7

Multiplying (27) by W(t) and integrating we have

Ofux((),t) Pyt)dt = ';}ZIA,,Z (na/L)(1/e,?) f; sin(nnt,) ojr g(t)
Yyt)dt -

El As (n/L)(1/wy) sin(mré.)(:f ( g(0)cos(e,t) + OIt g(t-s)
€0s(0,5) ds)Wo(t) dt (28)

Using Lemma 1 we have from (28)

0}ux(o,t) Yt)dt = :ZlA,f (nz /L)(1/,}) £, sin(nné,) ‘!T g(t)
¥o(t) dt (29)

Thus

fi= (OfTux(ﬂ,t) ¥o(t) dt) / (( ..SIA“Z (mr/L)(1/<o..2)-°>in(rm€n))((flT
g(t) Yo(0) dt) (30)

and (19) is proved.

For M =1 we have

Jute,) Walt dt = 3 AT sin(amn (1o sintunty) fg)
Y. () dt) -

:ilAf sin(nan;)(1/e,))f; sin(naé;)( ({I g(0)cos(o,t) + gtg(t-s)

cos(m,s) ds) ¥, (t)dt) 31

Using Lemma 1 and m= 0 we have from (31)

ju(zi,t) Po(t) dt = :iA,f sin(nan;)(1/@,H)f; sin(nnt,) (ong(t)
Yo(t) dt) (32)

Hence

fi= ({T u(zi,t) ¥o(t) dt) / ((2 lA..2 sin(nmla)(l/m..z)sin(nﬂr&l))((I)T
g(9) Yo(t) dt)) (33)

and (20) is proved.

For M =2 we have from (25) we obtain

u(x,t) = :;A,,Z sin(nnx/L)(l/mnz)é fusin(nat) g(t) -

© t
YA,z sin(nnx/L)(l/m,,z)kﬁzllfk sin(nm&,)( g(0)cos(m,t) + £ g(t-s)
n=1 =

cos(®,s) ds) (34)
Taking product with W ,(t) and integrating we get

2 T

0}u(zi,t) Yt dt = ,jZ:lA“z sin(nnni)(llo),,z)g‘;lfk sin(mtgk)(0
2(t) ¥ul®) dt) -

if‘n’ sin(nm]i)(ll(o,.z)é fi sin(nnék)gT( g(0)cos(w,t) + ({t g(t-s)
cos(m,8) ds) P(t) dt)  (35)

For m =0 and m =1 along with Lemma 1 we obtain

0}u(zi,t) Yot)dt = ilA,,z sin(nnqi)(llo),,z)élfk sin(nmé,)( ‘{T

g(t) ¥o(t) dt ) (36)

l'fTu(zi,t) Y, (t)dt = if‘"z sin(nm]i)(1/(:1),,2)%= ]fk sin(nné’;k)(.J;T
COMIGE I

A sin(nm)(l/wf)é:fk sin(nék)(f( g(0)cos(yt) + It 8(t-s)

cos(®;s) ds ) ¥y(t) dt) (37)

From (36) and (37) along with Lemma 1 and by separating

coefficients of f; and f, we obtain the following system of linear
equations :



Cufi + Cuf,= R, (33)
Cufi + Cufhb=R, (39)

Where
Cy= élA,f sin(nan))(1/,’) sin(nng;) 5 Cyp = iis.f
sin(nzn;)(1/@,”) sin(nnty)
Cy= g A, sin(nmn,)(1/0,%) sin(nn,) (0} g(t) Py(t) dt) -
A (1/o,?) sin(rn,)sin(rE,)(0.5T)
Cn= EA: sin(nan;)(L/o,”) sin(nag,) ( JT gt) Yy(t)dt) -

A2(1/o.2) sin(rn;)sin(é,)(0.5T)

T T
Ry = (Ju(z,t) Wo(t) dt) /( OI g(t) Wo(t) dt)

0

R;= oj{l(zi,t) Y, (t) dt

The solution f; and f; is as follows :

fi= (Cu/A)R, - (C1/A)R, (40)
f, = ~(Cy/A)R, + (Cy/A)R, 41)

Where A = Cy;Cyy— C5,Cpa
This proves (21) and (22).

We have for M =2
o}u,(O,t) Y.(t)dt = ZA,.’ (n/L)(1/0,2) étl'ksin(nnék)f g(t)

Y. ()dt -

© 2 t

¥ As2 (nmy/L)(V,”) kZlfk sin(n7g,)( fT( g(0)cos(o,t) +f g(t-s)
n=1 = 0

[}

cos(®,s) ds) Y,.(¢t) dt) 42)

For m=0 and m =1 along with Lemma 1 and separating f,
and f, we obtain (23) and (24). =

APPLICATION

The above theory is valid for an idealized case and some
approximations are necessary for its application to real
systems. The configuration of a simply supported pipe header
with branches is appropriate for this case. The branch
connections act as the point sources of fluid forces. The
dominant modes for the header are to be considered. The other
condition which bring the restriction on the use of this method
is the determination of function g(t) (profile of the forcing
function). This will depend on the type of excitation. For

example it may be taken as the pressure profile for valve
closing or opening and it has to be obtained experimentally. But
practically it is extremely difficult to determine g(t) for general
fluid excitations. However for a few cases g(t) can be estimated
as a series of co-sinusoidal excitations(e.g. pulsations generated
from a reciprocating machinery) where the frequencies or
harmonics are known (43). In this case we can determine the
point forces on the basis of the above mentioned theory as
explained below.

We consider a single point source (M=1) and two Fourier terms
in the time profile. The general case with p terms can also be
developed on this basis. However for simplification we limit
ourselves to p = 2.

i.e. g(t)= i:lQi cos(d; t) 43)

Proposition 2:

Let M=1 (single point source) and the time profiles expressed as
(43). Let f;; be the force component for the profile component
cos(d;t). Let u,(0,t) be the measured slope time history at the
origin.

f(x,t) =i:Zl £y 8(X — X, )eos(d;t) (44)
Where f;; may be obtained by solving the following system of
equations.
o}ux(ﬂ,t) Yut)dt = i IA,,Z (a/L)(Vo,) £,y sin(nné.)ofT
cos(@,t)Po(t) dt +

ilA..’ (n/L)(1/w,)A, fi, sin(nng,) f ( oft cos(; (t-s)) sin(e,s)
ds ) Wy (t)dt (45)
0ITu,(0,t) Yut)dt = n)iAn’ (a/L)(1/o,’) f; sin(ngl)ofT
cos(dt)¥ox(t) dt +
ni:lA..’ (nn/L)(1/®,)A, Ty sin(nng;) f ( ojtcos((;)l (t-9)) sin(®,s)
ds ) Wo(t)dt (46)

Here Wqi(t) is the solution of the Volterra Integral Equation for
profile component cos(®;t) .

Proof:
This is obtained by the expansion of the u,(0,t) and integrating
with Wg(t) and invoking Lemmal. m

It is interesting to note that the second term of (45) or (46) is
the integral of the product of the slope(for unit point load) and

Yoi(t).



We now consider the vibrations of the discharge piping header
for a reciprocating compressor[Fig.1]. The pipe material is
Carbon Steel A106 GrB with standard schedule. The branch
connection is through a 14” X 8” weldolet.

8" Branch

Fig. 1.Compressor Discharge Header Piping

The compressor generates pulsating flow due to the
reciprocating nature of movement of the piston. The pulsations
originated propagate as pressure waves in the fluid. These
waves interact with components like bends , tees etc. and impart
dynamic forces on the piping.

The pressure pulsations have a time varying profile as shown in
Fig.2. They are almost periodic in nature. The first plot of Fig.2
shows the pressure ratios w.r.t. average pressure vs. time. The
frequency domain transform or the time profile is also shown in
the second plot of Fig.2.The pressure pulsation peaks occur at
the harmonics as shown. The first two harmonics (4.5 Hz and
9.0Hz) have significant contribution and are considered in our
analysis . The pressure amplitudes are 10 bar and 5 bar
respectively for the two harmonics

The pressure profile may be obtained through a pressure probe
inserted in the fluid stream. The modern vibration instruments
have inbuilt real time data analyzers like F.F.T. The spectral
plots may be directly obtained from the instrument or else may
be separately analyzed on a separate computer. For a
reciprocating machine pressure profile may be calculated using
the transient Bernoulli’s equation [9].

The analysis begins with the determination of the natural
frequencies and the mode shapes of the system. Ten (10) modes
have been considered. In these modes the effect of the branch is
minimal. Which means that the modes are dominantly those of a

simply supported beam. The dynamic force is obtained from the
pressure profile. The magnitude being dynamic pressure times

internal cross-sectional area of the 8” branch. The point of
application of the force is at the weldolet branch junction.

45.2 meec/div

PP,

105

A, —_— s
16.3 Mu/giv

Fig. 2: Pressure Pulsation Pattern

We consider two cases in our analysis. The first case
corresponds to the first harmonic excitation (force f,;) and
second one consists of both the harmonics (forces f,,; and f,;).
The measured values of displacements and slopes are simulated
from the time history analysis of (2) with the imposed forces.
For both cases T is taken as 2200 m secs .

The analysis has been done for both slope as well as
displacement measurement for the second case. The
displacement at mid-span has been considered.

The results are shown in Table 1.

Measured Load | Calculated | Theoretical.
Parameter | No. Load(kN) | Load(kN)
Case 1 | Slope fo1 10.0 10.0
Case 2 | i. Slope for 5.0 4.5
2 10.5 10.0
ii. Displ. o1 5.0 4.5
fo2 10.5 10.0

Table 1: Comparison of Theoretical and Computed Load values



It is seen that high accuracy in the results are obtained even
with a small number of modes. Further improvement using
greater number of modes is not worthwhile in view of the
rounding errors. Using the computed forces the piping can be
analyzed for maximum stress and the maximum support loads.
In our case (Case 2) the maximum support reaction is found to
be 25 kN and the maximum stress is found to be about 90% of
the allowable fatigue stress for 107 cycles. Considering 2.8
Stress intensification factor (SIF) for the 8” branch with
weldolet this even exceeds the allowable stress. The support
span needs to be reduced to 8m for a safe design.

DISCUSSION AND CONCLUSION

A reconstruction strategy has been shown and can be applied to
real systems in a restricted manner. The other aspects like
stability and uniqueness can be easily derived from those of the
original problem [4-7] and have not been included in our main
study. But nevertheless they are absolutely essential for the
workability of the method. From the uniqueness theorem we
conclude that any set of point loads will result in a unique
response. Hence if the response is known with the help of
measurements the loads can be uniquely determined.

By stability we have a bound on the variation of the solution
subject to the errors in measurement. It means that the error in
the solution(values of the load coefficients) will be small if the
measurement of the response is done with good accuracy.

The u, or slope data can be obtained from displacement
measurements at two points close to each other and using the
discrete approximation of the derivative. In this case instrument
with real time dual channel analyzer has to be used in order to
obtain the readings of the two points simultaneously.

In a nutshell it may be said the determination of forces for a
vibrating piping system is a difficult task and still an open
problem. The method of finding a general solution is stymied
due to large number of unknown parameters. Inverse theory is
possibly the only method, which can be used, in a somewhat
general sense. In our study we have delineated a specialized
application of this method.
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