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1 Intreduction

Inclusion of a 'Support Friction
Into a Computerized Solution of
Self-Compensating Pipeline

Thermal elongations of a pipeline are compensaled in many cases by bending of pipeline

branches. If the pipeline lies on a horizontal rough and flat foundation that bending is
influenced by friction forces. Analysis of that influence is given in the paper. A
nonlinear, fourth order differential equation with variable coefficients governing the
phenomenon is derived and solved numerically as a two-point boundary problem. A
version of the solution suitable for a pipeline on discrete supports has been developed.
It may be used in conjunction with any existing compuler program for pipeline stress
analysis.  The results demonstrate existence:of a very significant additional bending
moment due to friction. It may exceed several times the one computed for a pipeline on
Srictionless foundation.

the pipe, but havixig a freedom to slide over the surface in both
‘longitudinal and lateral directions, thus providing for freedom of

A PIPELINE (hat is laid according to a natural pattern

providing for a high bending flexibility (Fig. 1, AB), or has a

. U-shaped section specially inserted into otherwise straight pipe
,pn order to increase its flexibility (Fig. 1, BC), will have the ther-
. mal elongations absorbed (self-compensated) by bending. TFre-

. quently such a pipcline lies flat on a horizontal, rough surface

and is separated from that surface by discrete supports welded to -
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bending necessary for self-compensation. Friction forces that
accompany the support sliding influence the bending and, hence,
the self-compensation phenomenon. One may expect they act as
additional constraints limiting the system flexibility thus increas-
ing the thermal stresses. Analysis of that friction and the result-
ing increase of stresses in the pipe is the subject of this paper.

2 Derivation of the Mathematical Model

The following well-known properties of friction forces are
adopted in further analysis:

1 The sense of the friction force vector at a point is opposite
to the sense of the relative velocity vector at the same point of
contact between two surfaces sliding one with respect to the other.

—————Nomenclature
A pipe cross section (struc- l length of a straight line sec- t = pipe wall thickness (cm)
tural}(em?) tor in the pipeline (em) 2 axial displacement (cm)
D = pipe outer dia (¢cm) M- = Dending moment (kgf-cm) w = lateral displacement (cm)
(% displacyement (¢m) My muximftl bending molmgnt 10 lateral displacement atz = 0
E Yf’llf‘g 5 m“dulus. (kgl'/cnl?? obtained from" II‘O-fI‘I(:U()n 11 axial displacement
F friction force acting on unit elementary solution - .
length of the ni sight of unit length of v = resultant displacement of in-
g e pipe q welg ength ¢ - .
@ = weight in a system with fric- pipe (with a medium in- ﬁ'mtemmal section of the
tion (Fig. 14) and spring side) (kgf /em) pipe {em)
¢ spring constant (kgf/cm) T, 7T, AT initial, final temperature, in- a thermal  elongation. coef-
I pipe eross-section moment of crement of the tempera- ficient 1/1 deg C
inertia (cm*) ture (deg C) I friction coefficient

“Journal of Engineering for Industry

AUGUST 1972 / 197

i




e

VIEW FROM
ABOVE.

\V2
ra)

B

OX

Fig. 1 Typical, self-compensating pipeline
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Fig. 2 Dry friction characteristics

2 Tor dry friction the friction force magnitude is a step fune-
tion of displacement as shown in Fig. 2. That disecontinuity de-
termines the problem as intrinsically nonlinear and eliminates
the possibility of using the superposition principle. The final

“state of deformation reached by the pipeline in the process of
heating from temperature 71 to T» will be found by analyzing
these deformations and associated forces as they develop, be-
ginning from the initial undeformed state corresponding to
temperature 7.

On the basis of current pipeline design practice the following
simplifying assumptions may be made, without loosing the
physical sense of the problem:

1 The discrete supports are spaced closely enough to permit
their replacement by a continuous support by a flat, horizontal,
rigid, and rough foundation having the {riction cocflicient u.

2 Unit length of the pipeline weighs g kgf/em; hence, the fric-
tion force acting on that unitlengthis F' = gu kgf/cm.

3 T, < 200 deg C, so that one may neglect change to the
Young’s modulus due to temperature.

4 Tension/compression energy is small compared with bend-
ing energy.

2.1 Initial stage. Consider now an infinitesimal pipeline sec-
tion dr (Fig. 3) at distance z from the fixed support of the pipe-
line, and let the temperature increase slowly and uniformly in the
wholesystem. The pipeline tends to axially expand by

1)

that generates a counter acting axial friction force cancelling the
thermal expansion so that

up = a-AT-x

—_ _l’; l _}.. 2 (2)
=g\ T 9T

No displacement of the dz section will then oceur, but since

3)

F < qu

ment:

_qul

At = I
2EA«
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that stale will last until temperature reaches a threshold incre-

(4)

After that temperature threshold is exceeded, the pipe begins to
move, friction force is fully developed, and its magnitude, but
not direction, remains constant. It turns out, conveniently, that
AT*is very small in practical cases. ,

Assume, for instance, the following input values typical for & -
large diameler pipeline transporting hot water for heating pur-
poses:

100 cm (OD), t = 1.6 cm,
11.1 X 1078 1/1 deg C (steel)
E = 2 X 108 kgf/cm?,

q = 11.22 kgf/em (pipe {ull of water)

) -

l = Tmax = 100 m 10¢ cm

Substituting it into equation (4), one obtains

AT* = 5.25u ©)’

and for 4 = 0.4 (for rusted, not maintained sliding surfaces)A-
AT* = 2.12 deg C. ‘This value is negligible compared with T

22200 deg C. Hence,one may state with a good accuracy that the
pipeline motion due to thermal expansion begins simultaneously
with the increase of temperature.

2.2 Stage of fully developed friction. The motion of the pipeli
is characterized by: total displacement v, axial displacement u;
and lateral displacement w.

According to assumption 4 (section 2.1), equation (1), and the "
final conclusion of section 2.1, one may deduce that the direction’
of v tends to become paraliel to the pipe axis, as x — 0 (x = 0 at
the fixed support point), because displacement w vanishes faster
(nonlinear function of x) than w (linear function of z), when z
decreases.  One may, thus, approximate the path of a point of th?
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Fig. 3 Self-compensating pipeline in motion due fo heating

fn

Fig. 4 Displacements, velocities, and forces on an infinitesimal section
of the pipeline
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pipeline, as a straight line connecting the initial and the final §‘
positions of that point. ) A T
Hence, for angle v in Fig. 4 » qﬁ _Ih .

- ' tany = w/u (7 - {
! and the friction force may be resolved into lateral and axial com- >~ v

ponents: ) ! VIEW FROM

I ABOVE
’ : w
F,.=F-~=F-w/(u’+w’)‘/' ! &
v _]/
(8) hpoa oo
u
F,=F: v = F-u/(u+ w?)'/? Fig. 5 Exemplary pipeline configuration

Using, again, assumption 4 (section 2.1) to eliminate the in-
» fluence of F_ on u, one obtains, applying equation (1),
3 o= o AT 1/ . . . .
= Fp = Fow/((e-8T-2)" + “’Q)A ! (9)  20m, 100m, typical for design practice and for p = 0.4. Ad-
g The elementary equation of the theory of begm bending may now fl‘tm“‘_‘“yy g = 0.1 has bce.n.n!so input for l = 100m, in order to
: * written with respect to the friction lateral component treated INVestigale the.system Se“ﬁ“’“’.‘ty to the variance of g.

Results are illustrated in Figs. 6, 7, 8, 9 where the no-friction

& continuous loading acting on the pipe in the horizontal plane: ] ¢
(= 0) solution was also plotted for comparison. The graphs

show striking increase of the bending curvature, particularly for
the long branch system shown in Tig. 6, for which bending action
. . . concentrates clearly in the neighborhood of the corner. The re-
When equations (8) and (9) and relationship F' = g are taken  ilting hending moment exceeds many times its value that occurs

lw
Br-52 = —F, (10)

drt

= into account, equation (10) becomes: in no-friction pipeline, as shown in Fig. 7. .
diw qu w N2\~ Examination of the results plotted in Figs. 6 to 9 suggests
’ B b WA — cw =0 11 ing:
Tt + W AT EI ( + <aAT> ) (11)  the following:

It is an ordinary differential equation of the fourth order with a
variable coefficient that is a nonlinear function of both dependent
and independent variables.

No solution in closed form is known for an equation of this

type. Solution has to be sought by means of numerical integra- . {=10n
tion to be carried out specifically for a particular pipeline E/N
configuration. - 1

3 Numerical Selution

A p=G1
. . . . . :04 \‘% )
The equation solution involves four integration constants that I

!

are to be determined from the boundary conditions defined at each
end of the straight line sector of the self-compensuting pipeline.

| the theory of differential equations, the determination of these
onstants from boundary conditions formulated at both ends of
the integration interval is known as a so-called two point problem,
for which a variety of solution methods, usually iterative, are

deseribed in the standard mathematical texts or monographs, such
as Fox [1]tor 1lildebrand [2]. R Fig. 6 Elastic line of bending in horixontal plane for different u

Fixeb
AND CLAMPED
PoOINT

The following demonstrates a solution for a particular ex-
. emplary pipeline shown in Fig. 5. Dueto the symmetry, it is suf-
ficient to consider only one of the branches, for instance branch
AB.

Boundary conditions are: " : {~100m

=

at the corner A:

w=a ATl = 1w

dw _
dz ‘ A . i

due to the symmetry.

_at point B:

w = 0, dlj =0 §ot-f - —— ;
dr AN P
e : .
due to full clamping. ’ L4 [ . [ q8 10

Computations have heen carried out for three values of [ = 10m,

Fig. 7 Ratio of bending moments with friction to mdximal bending'
moment without friction (My) versus location along pipe (¥ = I — x/N),
1t Numbers in brackets designate References it end of paper. for{ = 100m
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referred 1o above, is a fictitious foundation created to represent
‘l'-ZOm the action of the lateral friction component F, (section 2.2) acting :
w in horizontal plane. The real foundation on which the pipe rests :
: - is, and remains, rigid. "'
\ Comparing moment from equation (15) with the one corre-
\\ sponding to an elementary solution for the pipeline with no fric- :
W tion, one obtains ratio n:
'M\ ’ m
’ N ~ L = (M 1M
. i (1 mnx)p;‘ 0/ (A mnx);‘=0
- > o~ - 1 ,
1 "] =5 @u)"* - (V/EELaAT) = (16)
Discrepancy betlween the results of numerical integration of
Bt ‘M ! 5 4s 48 10 exact equation (11) and the simplified solution represented by
y ¥ equation (16) is plotted in Fig. 10. In the region 40m < I <
& r : Fig. 8 Elastic line and bending moment for | = 20m 100m, maximal error in terms of ratio 7 is 18 percent of the more :
! ; ! accurate value; mean error is 10 percent. The error gives over
-3 ! estimation of the bending moment.
5“ T In view of the above and the uncertainty of the input data re-
o 'R w_“\ garding friction cocfficient u, one may accept equation (16) as
: 1A \\ {=f0m sufficiently accurate for engineering practice. It will, however, 7
# g8 \ w7 | apply only.to such relatively rare pipeline designs in which' the
" gy g \ -0 pipe rests directly on the surface or is supported by discrete sup-
’ M % x W ports spaced so closely that they may be idealized as continuous
¥ I o AN -11:4 support.
: Y \l\ The case of discrete supports with friction spaced wide apart,
I = @ | N — which is more relevant to the actual design practice, is discussed ' :
o // \J\_ in the following section. ' R
B . = ~ . 3
i m— ! .
E 1 | , | ;
! ‘ 40 l ! 5 Adaptation of the Algorithm to the Discrete Supports
LS s L L . , and Existing-Computerized Procedures.
' X — In section 4, action of the dry friction force has been idealized
- by a fictitious elastic foundation characterized by a coefficient 8

Fig. 9 Elastic lin d bending moment for /| = 10m . . . . R
9 Hic Jine and bending r determined by equation (13). Such elastic foundation may be

discretized to a set of elasticsupports (springs). Spripg constant

1 Friction may be responsible for a very significant increase
of bending stresses in self-compensating heated pipeline.

2 The bending curvature decreases when u is reduced, but it
is a very weak relationship.
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I 4 Approximated, Simplified Method of Sclution 0 5

‘ Equation (11) has a form similar to that of the ctassic equation J[ :

'y of 8 beam on an elastic foundation : 3

R 1 ' L S

’ ;‘Ef. 24w =0 : (12) 8 §

Nt (.lx‘ +—

(. /s
i For full similarity, one would have to put: L
3 L

1-A

- NI -~ 1y

which implies an elastic foundation of the stiffness varying as
. functioh of both x and w. It is a weak function, however.
Therefore, one may fix 8 al the value which oceurs for z = [, at
the corner. Thus, '

qu a = 1

‘ 8= " (N2 EllaAT) Vs (14)

4{5; and maximal bending moment, known from the solution for the

%;‘ : beam on elastic foundation occurs at z = [, and is determined by

Muax = wo-282ET K
. where % « & w
‘ - . {fm]—— : .
Wy = (W)emt = a~AT~l .

) . Fig. 10 Comparison of n-ratios obtained from solution of equation (11)
It has to be clearly understood that the *‘elastic foundation’””  and the simplified solution o
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¢ of the support will.depend on the elastic constant of the elastic
foundation k and space k between the supports:

¢ =k-h Soan

where k (unit of force/unit of length sq.) is related to 8 according
to theory of a beam on elastic foundation:

k = 4Bi-El (18)

Considering equations (8), (10), (12), (17), and (18), one
obtains for a support number j:

c; = g p-k (g + wHT ) (19)
The dimension of ¢, is, consequently, (unit of force/unit of length)
as a spring constant. For those sectors of pipeline which are
attached to a fixed point one may use the approximation:
u; = a-AT-s; (20)

b

(according to equation (1)) where s; is measured from the fixed
point to the support j (see Fig. 11); thus wu; becomes & constant
fopmupport j. Lateral deflection w; is unknown; so is axial
di;, scement wu; but only for those sectors which are not at-
tached to a fixed point, for instance, the central sector in self-
compensating Z-layout.

One has to emphasize, again, at this point that the above elastic
supports (springs) are fictitious ones introduced for sole repre-
sentation of the lateral, herizontal action of friction on the real
sliding supports that are still assumed rigid with respect, to verti-
cal forces. An example of a self-compensating pipeline so
idealized is shown in Fig. 11.

Pipeline on so-defined elastic supports readily lends itself to a
routine computer analysis by means of well-established standard
programs. A solution may now be obtained by iteration, in the
following steps:

1 Assume w;, u; for all supports? (assigning to u; the value
given by equation (20) for pipe sectors attached to a fifed point).
2 Determine c; for each spring j according to equation (19).

3 Use any computer program available that will solve a heated
pipeline restrained by discrete springs (example in Fig. 11),
each of the springs having a constant ¢;, for displacements and
stresses.

4 Repeat steps 2, 3, and 4, substituting new w;, u;, culeulated
in step 3, into equation (19) in step 2, until w;, u; (or ¢;) converge.
Tl steps are illustrated by » flowchart in Fig. 12, The process
is . _adly converging due to ¢, being a weak function (equation
(19)) of u;, wy, and for typical layouts suflicient accuracy is ob-

. tained in 3 'to 5 iterations. This makes the method quite prac-

tical even if data transfer to and from a standard comnputer pro-
gram used in step 3 (box 3in Fig. 12) is to be done by hand.

The above is illustrated by a numerical example shown in Figs.
il and 13. ELAS computer program?® (reference [3}) has been

: T avoid singularity avoid i;? + w,? = 0.
3 General purpose program for structural analysis,

.

@) Bending moments b Deflections W
z

% p ¥
W"W&‘ <
- 7y e S
e P CSS[;;\"VM Pay —
fixed point “oan CHixed
pount

Fig. 11 Perspective view on a pipeline (Z-layout) on discrete supports
with friction sliding in horizontal plane, idealized for computer analysis.
Springs c; represent horizontal action of the friction on the sliding sup-
poris.
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for all supports J i
assume W, ,u
373
Y F <
comnute c¢,'s A
.’ 3 2
Eq. 19
w, |u
J1d
A computer program
for stress, deflection 3

analysis yields new w_,u

373

convergency
criterion
satisfied?

STOP
Fig. 12 Flow chart of the iterative computation
N Mia® 6245+ 10° [ kgf«cm]
- “.) \\\ x ;) Sx-lppori'

e AB=60m
il BC =100m

., AT = 100°C
r—r/ervv"L é
AT Mgy 1.824x10

Fig. 13 Example of the deflections and bending moments for a pipeline
on supports with friction (dashed line) and without friction (continuous
line) (all data as in equation (5), except length; support spacing’h = 20
m)

applied in step 8. Tt took 4.9 sec of CPU time on a CDC 6600
compnter per iteration and converged in 4 iterations to accuracy
(((W;dnew (0;)014) /W, new) < 0.015. Maximum bending
moment and stress reached 3.43 times the corresponding values
for the frictionless solution. :

6 Undeterministic Character of the Problem

It is a well-known property of an elustic system with dry friction
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Fig. 14 Elastic system with friction

Ve

Fig. 15 Pipe on rollers positioned to eliminate F,

constraints that it may attain several statie equilibrium positions
within limits determined by the {riction forces. TFor instance, a
simple system shown in Fig. 14 will stay in equilibrium for any
distance f provided .

JC<L Gy

>
Displacement d resulting from a static load P, d = ¢ deter-

mines merely the center of the interval 2f.  Similar behavior is to
be expected in the pipeline problem discussed here.

In particular, referring to Fig. 6, one may regard the elastic
line of bending for 4 = 0.4 as resulting from an idealized deforma-
tion process in which friction forces stay constant at all points
during the whole time, while temperature rises slowly and mono-
tonically. In reality, unavoidable vibrations of the foundations
will cause random fluctuations of the vertical pressure on the
supports and resulting release of the friction constraints. ISach

802 / Aucust 1972 .

release will let the elastic pipeline ereep toward the elastic bend-
ing line, corresponding to u = 0, that is, toward lower level of the
elastic energy. Similar results will have the temperature fluctua-
tions due to normal or unscheduled pipeline modes of operation.

Accordingly, the true elastic line will be established between
the curves for u = 0, and u = 0.4, its exacl position bheing a ran-
dom variable. Similarly, true bending moment will be bounded
by the solutions without and with friction

Mp=0 < Muue < (M)uso

The solution discussed "here is, thus, to be understood as an

* upper bound of the bending moment, the exact value of which is

dependent on random factors.
The whole problem then has clearly not a deterministic, buta
stochastic characler.

Conclusions

Support friction may increase bending moment in self-com-

pensating heated pipeline several times in comparison {o an ideal -

case with no friction. .

A practical, approximated analysis with friction that makes use
of existing structural analysis computer programs is proposed.

The problem has a stochastic character, analyses with and
without friction produce merely the lower and upper bounds on
the bending moment value, which is a random variable within
these bounds.

Onc may decrease the bending moment by reducing the friction
coeflicient u but it has to be a radical reduction, such as the one
resulting from replacing-the sliding surfaces by rollers. Inr
terestingly enough rollers should be positioned as shown in Fig.
15 to effectively eliminate lateral friction forces (£,), not the
axial component /,, which is essentially harmless.
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