Od = t =	33.7 2.6	mm mm	2.275	mm	1.275	mm	1.6	mm
mill tol =	-12.5	% =	-0.325	mm	1.275	111111	1.0	111111
corro =	-12.5 -1	mm	-0.525	111111				
id =	28.5	mm	29.15	mm	31.15	mm	30.5	mm
ia	20.5		23.13		31.13	•••••	30.3	
	no red		-mill		-mill-corr		- corr	
CSA =	254.03	mm^2	224.60	mm^2	129.88	mm^2	161.35	mm ²
Z =	1835.44	mm^3	1654.01	mm^3	1014.57	mm^3	1236.4	4 mm ³
hoop stress =	14.25	N/mm ²	16.66	N/mm ²	31.76	N/mm ²	24.78	N/mm ²
		.,		.,		,		,
Axial stress 1 =	0.00	N/mm²	0.00	N/mm ²	0.00	N/mm²	0.00	N/mm²
Axial stress 2 =	6.53	N/mm²	7.73	N/mm²	15.26	N/mm²	11.77	N/mm²
Axiai 3ti C33 Z =	6.53	N/mm ²	7.73	N/mm ²	15.26	N/mm ²	11.77	N/mm ²
_	0.55	IN/IIIIII	7.73	IN/IIIIII	15.20	IN/IIIIII		
handing stuggs	21.36	N/mm²	23.70	N/mm²	38.64	N/mm²	31.70	N/mm ²
bending stress =	21.50	N/IIIII	23.70	N/IIIII	30.04	IN/IIIIII	31.70	N/mm
	0.00	N1/2	0.00	N. / 2	0.00	N1 / 2	0.00	N1/2
Torsional stress =	0.00	N/mm ²	0.00	N/mm ²	0.00	N/mm ²	0.00	N/mm ²
sif =	1		1		1		1	
211 -	1		1		1		1	
	29.78	N/mm²	33.33	N/mm²	FF 02	N/mm²	45.20	N/mm ²
code stress =	29.78	N/IIIII	33.33	N/IIIII	55.82	IN/IIIIII	45.39	N/mm
63	20.2	N1/2					44.04	N1/2
C2 =	29.2	N/mm ²					44.81	N/mm ²
11.55	0.50	2	difforesses b		uses the alternative pre	ccura tares		2
diff =	0.58	N/mm ²	- amerence c	0.58	N/mm ²			

Ī	8.4	= pcdo/4en	pcdo/4en =	13.7]
	7.8	= ((pcdi2)/(do2-di2))+(Pc/2)	((pcdi2)/(do2-di2))+(Pc/2) =	13.1	
	0.6	N/mm ²		0.6	N/mm ²
	29.2	N/mm2 - using 7.83 N/mm2	- matches C2 exactly now! -	44.8	N/mm ²

The stress intensification factors, i, are given in Tables H-1 and H-2.

As an alternative route to equations given in 12.3.2 to 12.3.6, a more detailed determination of the stresses by separating in-plane and out-of-plane moments can be performed, using the corresponding stress intensity factors in Table H-3.

In this case the factor 0,75 i for moment M_A , M_B and M_C in equations (12.3.2-1), (12.3.3-1), (12.3.4-2) and (12.3.5-1) shall be replaced by i_0 and i_1 respectively, in accordance with Table H-3. In the same way, the factor i for moments M_C and M_D in equations (12.3.4-1), (12.3.4-2), (12.3.5-1) and (12.3.6-1) shall be replaced by i_0 and i_1 .

NOTE The pressure term $\frac{p_c d_o}{4e_n}$ in the equations (12.3.2-1), (12.3.4-1), (12.3.4-2) and (12.3.5-1) may be

replaced by the alternative term $\frac{p_c d_i^2}{d_o^2 - d_i^2} + \frac{p_c}{2}$.

For the general and the alternative route, the stress intensity factors, i, including the reduction factor 0,75, if defined, shall be greater than or equal to 1,0 (0,75 $i \ge 1,0$). If a value less than 1 is obtained then the value 1,0 shall be used.

12.3.2 Stress due to sustained loads

The sum of primary stresses σ_1 , due to calculation pressure, p_c , and the resultant moment, M_A , from weight and other sustained mechanical loads shall satisfy the following equation:

$$\sigma_1 = \frac{p_c d_o}{4e_n} + \frac{0.75 i M_A}{Z} \le f_f \tag{12.3.2-1}$$

where

- M_A is the resultant moment from the sustained mechanical loads which shall be determined by using the most unfavourable combination of the following loads:
 - piping dead weight including insulation, internals and attachments;
 - weight of fluid;
 - internal pressure forces due to unrelieved axial expansion joints etc.

 f_f is the design stress for flexibility analysis in N/mm2 (MPa) with $f_f = \min(f; f_{cr})$.

12.3.3 Stress due to sustained and occasional or exceptional loads

The sum of primary stresses, σ_2 , due to internal pressure, p_c , resultant moment, M_A , from weight and other sustained mechanical loads and resultant moment, M_B , from occasional or exceptional loads shall satisfy the