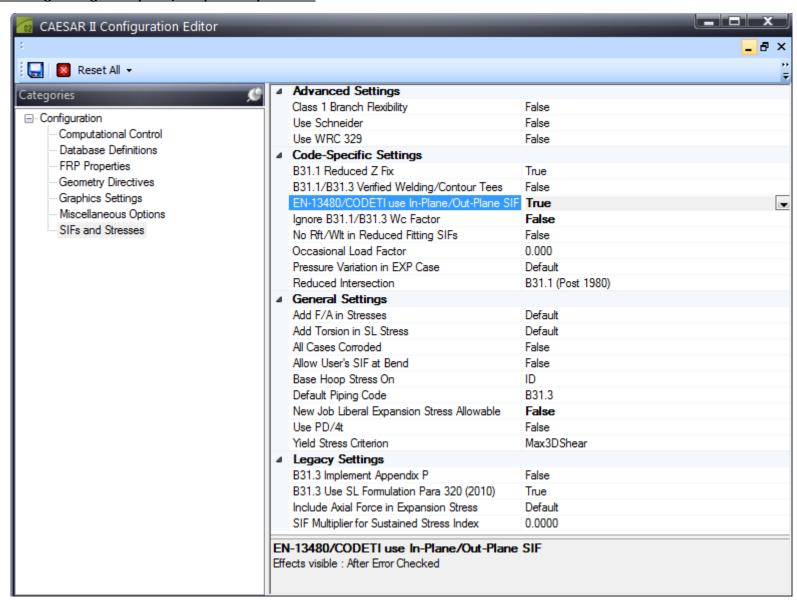


STRESSES EXTENDED REPORT: Stresses on Elements CASE 2 (SUS) W+P1

	Axial	Bending	Torsion	Hoop	Max Stress	CIE/Indox CIE/Indox	Code	Allowable	Ratio	
Node	Stress	Stress	Stress	Stress	Intensity	SIF/Index SIF/Index In Plane Out Plane	Stress	Stress	RACIO	Piping Code
	N./sq.mm.	N./sq.mm.	N./sq.mm.	N./sq.mm.	N./sq.mm.	In Flane Out Flane	N./sq.mm.	N./sq.mm.	75	

Piping Code: EN-13480 = EN-13480, June 2012

CODE STRESS CHECK PASSED : LOADCASE 2 (SUS) W+P1


Highagt	Stresses:	/N /ac mm	١.
niquest	otresses.	(N./SQ.MML.	,

Tid about Co.		(37 /	,								
Highest St	resses:	(N./sq.mm.	•	_							
Ratio (%):			24.3	@Node	10						
Code Stress	3:		29.2	Allowable	Stress:	120.	0				
Axial Stre	33:		6.5	@Node	20						
Bending St	ress:		21.4	@Node	10						
Torsion St	ress:		0.0	@Node	20						
Hoop Stress	3:		14.3	@Node	20						
Max Stress	Intensit	y:	45.0	@Node	10						
10	6.53	21.38	0.00	14.25	45.00	1.000	1.000	29.21	119.99	24.34	EN-13480
20	6.53	9.50	0.00	14.25	28.75	1.000	1.000	17.33	119.99	14.44	EN-13480
20	6.53	9.50	0.00	14.25	28.75	1.000	1.000	17.33	119.99	14.44	EN-13480
30	6.53	2.38	0.00	14.25	28.75	1.000	1.000	10.20	119.99	8.50	EN-13480
30	6.53	2.38	0.00	14.25	28.75	1.000	1.000	10.20	119.99	8.50	EN-13480
40	6.53	0.00	0.00	14.25	28.75	1.000	1.000	7.83	119.99	6.52	EN-13480

LOCAL ELEMENT FORCES AND MOMENTS REPORT: Forces on Elements CASE 2 (SUS) W+P1

Node	Load Case	fx N.	fy N.	fz N.	mx N.m.	my N.m.	mz N.m.
LOAD CA	ASE DEFINITION	KEY					
CASE 2	(SUS) W+P1						
10	2 (SUS)	0	0	-39	0.0	39.2	0.0
20	2 (SUS)	-0	0	26	0.0	-17.4	0.0
20	2 (SUS)	0	0	-26	0.0	17.4	0.0
30	2 (SUS)	-0	0	13	0.0	-4.4	0.0
30	2 (SUS)	0	0	-13	0.0	4.4	0.0
40	2 (SUS)	-0	0	0	0.0	0.0	0.0

Update Config Setting for In-plane/out-plane improve sifs

CASE 2 (SUS) W+P1

	Axial	Bending	Torsion	Hoop	Max Stress	SIE/Index SIE/Index	Code	Allowable	Ratio	
Node	Stress	Stress	Stress	Stress	Intensity	SIF/Index SIF/Index In Plane Out Plane	Stress	Stress	Ratio	Piping Code
	N./sq.mm.	N./sq.mm.	N./sq.mm.	N./sq.mm.	N./sq.mm.	In Flane Out Flane N	./sq.mm.	N./sq.mm.	75	

Piping Code: EN-13480 = EN-13480, June 2012

CODE STRESS CHECK PASSED : LOADCASE 2 (SUS) W+P1

Highest Str	esses: (N.	/sq.mm.)															
Ratio (%):			37.3	@Node	10												
Code Stress	:		44.8	Allowable	Stress:	120.0											
Axial Stres	s:		11.8	@Node	20												
Bending Str	ess:		31.7	@Node	10												
Torsion Str	ess:		0.0	@Node	20												
Hoop Stress:			24.8	@Node	20												
Max Stress	Intensity:		43.5	@Node	10												
10	11.77	31.73	0.00	24.78	43.51	1.000	1.000	44.81	119.99	37.34	EN-13480						
20	11.77	14.10	0.00	24.78	28.75	1.000	1.000	27.18	119.99	22.65	EN-13480						
20	11.77	14.10	0.00	24.78	28.75	1.000	1.000	27.18	119.99	22.65	EN-13480						
30	11.77	3.53	0.00	24.78	28.75	1.000	1.000	16.60	119.99	13.83	EN-13480						
30	11.77	3.53	0.00	24.78	28.75	1.000	1.000	16.60	119.99	13.83	EN-13480						
40	11.77	0.00	0.00	24.78	28.75	1.000	1.000	13.07	119.99	10.89	EN-13480						

LOCAL ELEMENT FORCES AND MOMENTS REPORT: Forces on Elements CASE 2 (SUS) W+P1

Node	Load Case	fx N.	fy N.	fz N.	mx N.m.	my N.m.	mz N.m.
LOAD CA	SE DEFINITION	KEY					
CASE 2	(SUS) W+P1						
10	2 (SUS)	0	0	-39	0.0	39.2	0.0
20	2 (SUS)	-0	0	26	0.0	-17.4	0.0
20	2 (SUS)	0	0	-26	0.0	17.4	0.0
30	2 (SUS)	-0	0	13	0.0	-4.4	0.0
30	2 (SUS)	0	0	-13	0.0	4.4	0.0
40	2 (SUS)	-0	0	0	0.0	0.0	0.0

Hand Calc Stresses – match original analysis run but not revised run even though sifs are unity and all raw forces and moments are identical

Od =																	
	33.7	mm						P (N/mm2)	axial fx (N)	fy (N)	fz (N)	torsion	my (Nm)	mz (Nm)			
				2.275	mm	1 27	E mm	2.6	0	0	-39	0	39.2	0			
t=		mm 0/				1.27	5 mm	2.0	U	U	-39	U	39.2	U			
mill tol =		% =		-0.325	mm			The etree	e intoneifi	ation factors	i are aive	n in Tablee	H 1 and H	່ ງ			
corro =		mm						The stres	s mensiii	ation factors	s, r, are give	an in Tables	n-Tanun-	·Z.			
id =	28.5	mm		29.15	mm	31.1	5 mm	As an alt	ernative ro	ute to equati	ons given i	n 12.3.2 to	12.3.6, a m	ore detailed	determinat	ion of the s	tresses by
										and out-of-	plane mon	nents can b	e performe	d, using the	correspo	nding stres	s intensity
	no red			-mill		-mill-co	r	tactors in	Table H-	5.							
CSA =	254.03	mm2		224.60	mm2	129.88	mm2	In this ca	ase the fa	ctor 0,75 i fo	r moment	M₄. M _B and	d Mc in eau	ations (12.3	.2-1). (12.	3.3-1). (12.	3.4-2) and
Z =	1835.44	mm3		1654.01		1014.57		(12.3.5-1) shall be	eplaced by i	o and i _i res	pectively, in	accordance	e with Table	H-3. In the	same way	, the factor
									nents M _c a	nd M _D in eq	uations (12	.3.4-1), (12.	.3.4-2), (12.	3.5-1) and (12.3.6-1) s	hall be repl	aced by i _o
hoop stress =	14.25	N/mm2		16.66	N/mm2	31.76	N/mm2	and i _l .									
									_	, p _c	do						
Axial stress 1 =	0.00	N/mm2		0.00	N/mm2	0.00	N/mm2	NOTE	The pres	sure term $\frac{p_c}{4e}$	in the eq	uations (12.3	3.2-1), (12.3.	3-1), (12.3.4-1), (12.3.4-2	and (12.3.5	o-1) may be
Axial stress 2 =		N/mm2		0.00	N/mm2	15.26	N/mm2										
	6.53	N/mm2		0.00	N/mm2	15.26	N/mm2	replaced b	y the alten	ative term $\frac{I}{d^2}$	$\frac{P_c u_i}{2} + \frac{P_c}{2}$						
	0.00	,2		0.00	,	25.25	,			a	$-a_i$						
bending stress =	21.36	N/mm2		23.70	N/mm2	38.64	N/mm2	For the o	eneral an	d the alterna	tive route	the stress i	ntensity fac	tors i inclu	ding the re	duction fac	tor 0.75 if
Dending stress -	21.30	14/1111112		23.70	14/1111112	36.04	14/111112			eater than or							
orsional stress =	0.00	N/mm2		0.00	N/mm2	0.00	N/mm2	shall be u	used.								
orsional stress =	0.00	N/mm2		0.00	N/mm2	0.00	N/mm2										
				_				12.3.2 \$	tress due	to sustaine	d loads						
sif =	1			1		1		The sum	of primar	/ stresses σ	due to ca	alculation or	essure n.	and the res	ultant mon	ent M _s fr	om weight
										l mechanical					antain mon	iorit, ma, ii	om worgin
code stress =	29.78	N/mm2		33.33	N/mm2	55.82	N/mm2					•					
C2 =	29.2	N/mm2							$p_{\alpha}d_{\alpha}$	0.75 i M.							
									$\sigma_1 = \frac{1}{4e_n}$	$+\frac{0.75 i M_A}{Z}$	$\leq f_f$						(12.3.2-1
diff =	0.58	N/mm2	- differen	ce because	e C2 uses the	alternative press	ure term.		- "								
								whe	re								
									M is the	rocultant ma	mont from	the euctain	od mochani	cal loade wh	ich chall b	o dotormin	ed by using th
	8.43	= pcdo/4e	en							resultant mo unfavourable					iicii Siidii D	e determine	su by using th
	7.83	= ((pcdi2)	/(do2-di2))	+(Pc/2)					most	ar na rour able	Combinati	on or the lor	iowing ioau	٥.			
	0.60	N/mm2							— r	iping dead w	eight inclu	ding insulati	on, internals	and attach	ments;		
	29.2	N/mm2 - u	using 7.83 N	N/mm2	- matches C	2 exactly now!			_	araba as s							
									— v	eight of fluid	,						
									— i	iternal press	ure forces	due to unrel	ieved axial	expansion jo	ints etc.		
									f_f is	the design st	ress for fle	xibility analy	sis in N/mn	n2 (MPa) wit	$h f_f = mir$	$(f;f_{cr}).$	
								12.3	.3 Stress	due to sust	ained and	occasional	or excepti	onal loads			
																	eight and othe